MATH1010E University Mathematics
Quiz 2
Suggested Solutions
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MATHI1010E Quiz 2 Solutions 2

2.

(a) Differentiating gives
fl(x) = e7*(1—2?).
Set f'(x) = 0, we obtain the critical point x = +1. Computing the second

derivative,

f(z) = e *(2* — 2z — 1).
Using the second derivative test, x = 1 is a local maximum since f”(1) =
e 1(—2) <0, and z = —1 is a local minimum since f”(—1) = 2e > 0.

(b) Note that f(0) =1 and

lim f(z) = lim (z+1)% " =0,
T—r+00 T—>+00
and we have only one critical point = 1 in the interval [0, +00), with f(1) =
4e~! > 1. Therefore, the minimum does not exist and the maximum is 4e~!
located at x = 1.

. Without loss of generality, we can assume x > y. By mean value theorem, there exists

¢ € (y,x) such that
sinx —siny = (cos&)(x — y).

Since |cos&| < 1, we conclude that |sinz —siny| < |z —y|.

. Implicitly differentiating the equation gives

2x + 2y + 2xy — 2yy’ = 2,
which we can solve for 1/ to get

l—z—y
/
y p— (1)

At (2,0), we have

Differentiating (1), we obtain

y (= y)=1—y)—(1—2—y)(1—-y)
y' = .
(x —y)?

Evaluate at (0,2), we get

" 2(_1+%>_ (1_2)(1+%) 1

4

— End of Solutions to Quiz 2 —



